Part Number Hot Search : 
MT90210 74QQ1R LA507 BYX103G CXA2066 VSH54112 2472J KAQW210H
Product Description
Full Text Search
 

To Download IRFR5305TRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr5305pbf irfu5305pbf hexfet ? power mosfet fifth generation hexfets from international rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet ? power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. the d-pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. the straight lead version (irfu series) is for through-hole mounting applications. power dissipation levels up to 1.5 watts are possible in typical surface mount applications. parameter max. units i d @ t c = 25  c continuous drain current, v gs @ -10v -31 i d @ t c = 100  c continuous drain current, v gs @ -10v -22 a i dm pulsed drain current   -110 p d @t c = 25  c power dissipation 110 w linear derating factor 0.71 w/  c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  280 mj i ar avalanche current  -16 a e ar repetitive avalanche energy  11 mj dv/dt peak diode recovery dv/dt   -5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 srew 10 lbfin (1.1nm) absolute maximum ratings parameter typ. max. units r jc junction-to-case ??? 1.4 r ja junction-to-ambient (pcb mount)* ??? 50  c/w r ja junction-to-ambient** ??? 110 thermal resistance  ultra low on-resistance  surface mount (irfr5305)  straight lead (irfu5305)  advanced process technology  fast switching  fully avalanche rated  lead-free description 12/13/04 d-pak  i-pak irfr5305 irfu5305 pd-95025a v dss = -55v r ds(on) = 0.065 ? i d = -31a s d g www.kersemi.com 1
irfr/u5305pbf 2 www.kersemi.com  parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)     p-n junction diode. v sd diode forward voltage ??? ??? -1.3 v t j = 25c, i s = -16a, v gs = 0v   t rr reverse recovery time ??? 71 110 ns t j = 25c, i f = -16a q rr reverse recovery charge ??? 170 250 nc di/dt = -100a/s   source-drain ratings and characteristics parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage -55 ??? ??? v v gs = 0v, i d = -250  a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? -0.034 ??? v/  c reference to 25  c, i d = -1ma r ds(on) static drain-to-source on-resistance ??? ??? 0.065 ? v gs = -10v, i d = -16a   v gs(th) gate threshold voltage -2.0 ??? -4.0 v v ds = v gs , i d = -250  a g fs forward transconductance 8.0 ??? ??? s v ds = -25v, i d = -16a  ??? ??? -25 a v ds = -55v, v gs = 0v ??? ??? -250 v ds = -44v, v gs = 0v, t j = 150  c gate-to-source forward leakage ??? ??? 100 v gs = 20v gate-to-source reverse leakage ??? ??? -100 na v gs = -20v q g total gate charge ??? ??? 63 i d = -16a q gs gate-to-source charge ??? ??? 13 nc v ds = -44v q gd gate-to-drain ("miller") charge ??? ??? 29 v gs = -10v, see fig. 6 and 13   t d(on) turn-on delay time ??? 14 ??? v dd = -28v t r rise time ??? 66 ??? i d = -16a t d(off) turn-off delay time ??? 39 ??? r g = 6.8 ? t f fall time ??? 63 ??? r d = 1.6 ?, see fig. 10   between lead, ??? ??? 6mm (0.25in.) from package and center of die contact  c iss input capacitance ??? 1200 ??? v gs = 0v c oss output capacitance ??? 520 ??? pf v ds = -25v c rss reverse transfer capacitance ??? 250 ??? ? = 1.0mhz, see fig. 5  nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ???   ns 4.5   

  
    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)  i sd  -16a, di/dt   -280a/  s, v dd   v (br)dss , t j 175  c notes:  v dd = -25v, starting t j = 25  c, l = 2.1mh r g = 25 ?  i as = -16a. (see figure 12)  pulse width  300  s; duty cycle  2%.  -110  s d g s d g  this is applied for i-pak, l s of d-pak is measured between lead and center of die contact.  uses irf5305 data and test conditions.
irfr/u5305pbf www.kersemi.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 10 0 d ds 20s pulse width t = 25c c a -i , drain-to-source current (a) -v , drain-to-source voltage (v) vgs top - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bottom - 4.5v -4.5v 1 10 100 1000 0.1 1 10 10 0 d ds a -i , drain-to-source current (a) -v , drain-to-source voltage (v) vgs top - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bottom - 4.5v -4.5v 20s pulse width t = 175c c 1 10 100 45678910 t = 25c j t = 175c j a v = -25v 20s pulse width ds gs -v , gate-to-source voltage (v) d -i , drain-to-source current (a) 0.0 0.5 1.0 1.5 2.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 j t , junction temperature (c) r , drain-to-source on resistance ds(on) (normalized) a i = -27a v = -10v d gs  
irfr/u5305pbf 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 500 1000 1500 2000 2500 1 10 100 c, capacitance (pf) a v = 0v, f = 1mhz c = c + c , c shorted c = c c = c + c gs iss gs gd ds rss gd oss ds gd c iss c oss c rss ds -v , drain-to-source voltage (v) 0 4 8 12 16 20 0 102030405060 q , total gate charge (nc) g a for test circuit see figure 13 v = -44v v = -28v i = -16a gs -v , gate-to-source voltage (v) d ds ds 10 100 1000 0.4 0.8 1.2 1.6 2. 0 t = 25c j v = 0v gs sd sd a -i , reverse drain current (a) -v , source-to-drain voltage (v) t = 175c j 1 10 100 1000 1 10 100 operation in this area limited by r ds(on) 100s 1ms 10ms a t = 25c t = 175c single pulse c j ds -v , drain-to-source voltage (v) d -i , drain current (a)
irfr/u5305pbf www.kersemi.com 5 fig 10a. switching time test circuit fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds -10v pulse width  1  s duty factor  0.1 % r d v gs v dd r g d.u.t. v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f + - 25 50 75 100 125 150 175 0 5 10 15 20 25 30 35 t , case temperature ( c) -i , drain current (a) c d 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
irfr/u5305pbf 6 www.kersemi.com fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current q g q gs q gd v g charge -10v d.u.t. v d s i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - 0 100 200 300 400 500 600 700 25 50 75 100 125 150 17 5 j e , single pulse avalanche energy (mj) as a starting t , junction temperature (c) v = -25v i top -6.6a -11a bottom -16a dd d fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v d d driver a -20v 15v
irfr/u5305pbf www.kersemi.com 7 peak diode recovery dv/dt test circuit p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - -      v dd ? dv/dt controlled by r g ? i sd controlled by duty factor "d" ? d.u.t. - device under test  circuit layout considerations ?  low stray inductance  ? ground plane  ? low leakage inductance current transformer  * reverse polarity for p-channel ** use p-channel driver for p-channel measurements  v gs *    *** v gs = 5.0v for logic level and 3v drive devices  fig 14. for p-channel hexfets
irfr/u5305pbf 8 www.kersemi.com  

  

  
      
   12 in the assembly line "a" as s embled on ww 16, 1999 example: with assembly this is an irfr120 lot code 1234 year 9 = 199 9 dat e code we e k 16 part number logo internat ional rectifier assembly lot code 916a irfu120 34 year 9 = 1999 dat e code or p = designates lead-free product (opt ional) note: "p" in as s embly line pos ition i ndi cates "l ead- f r ee" 12 34 week 16 a = assembly site code part number irf u120 line a logo lot code assembly int ernational rectifier
irfr/u5305pbf www.kersemi.com 9  
   
      
    
  as s e mb l y example: wit h as s e mb l y this is an irfu120 year 9 = 199 9 dat e code line a week 19 in the ass embly line "a" as s e mbled on ww 19, 1999 lot code 5678 part number 56 irfu120 international logo rectifier lot code 919a 78 note: "p" in as s embly line position indicates "lead-free"  56 78 as s e mb l y lot code rectifier logo international irf u120 part number we e k 19 dat e code year 9 = 1999 a = as s e mb l y s i t e code p = de s ignat es lead-f ree product (opt ional)
irfr/u5305pbf 10 www.kersemi.com   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFR5305TRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X